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Graphing Trig Functions Part 2
Feb 21st

Graphs of the Trigonometric Functions Part II:
10.5: 29–31, 35, 36, 38–40, 44–51

For exercises 29–31 show that the following functions are sinusoids by rewriting them in the forms
C(x) = A cos(ωx + φ) + B and S(x) = A sin(ωx + φ) + B for ω > 0 and 0 ≤ φ < 2π.

29 f (x) = 2
√

3 cos(x)− 2 sin(x)

Before we can start the actual process of solving this problem it would be wise to state information we will
be utilizing.

We’re also going to need the sum formulas for both sine and cosine to solve this problem.

sin(α± β) = sin(α) cos(β)± cos(α) sin(β)

cos(α± β) = cos(α) cos(β)∓ sin(α) sin(β)

This problem allows us to make some assumptions so let’s list off our givens. We can assume that B is 0
due to there being no vertical shift at the end of our function. I will also be assuming that ω = 1 due to the
structure of our function though this won’t really be relevant due to how I will solve this.

B = 0 ω = 1
A =? φ =?

Okay, now we have the tools we need to work through this. The overall gameplan will be to take C(x)
and work it through the format of the expanded sum formulas. We will then substitute in values from f (x).
Doing this will allow us to solve for information we don’t have, that being A and φ. We will first start with
the expanded formula of cosine.

C(x) = A cos(ωx + φ) + B

What’s useful about C(x) is that with a little work it fits very nicely into the format of our sum formulas
listed above. For this we will let ωx = α and φ = β.
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2
√

3 cos(x)− 2 sin(x) = cos(α) cos(β)∓ sin(α) sin(β)

2
√

3 cos(x)− 2 sin(x) = A cos(ωx) cos(φ) + A sin(ωx) sin(φ) + B

Since we’re dealing with multiplication here we can rewrite this as:

2
√

3 cos(x)− 2 sin(x) = A cos(φ) cos(ωx) + A sin(φ) sin(ωx) + B

There’s something else interesting here. We can equate the coefficients on either side of our equation. Doing
so we can say the following:

2
√

3cos(x) = A cos(φ) cos(ωx)

2
√

3 = A cos(φ)
2 sin(x) = A sin(φ) sin(ωx)
2 sin(x) = A sin(φ)

We can actually use another identity now: the Pythagorean identity.

cos2(φ) + sin2(φ) = 1

Now, we can multiply this identity by A2 and then substitute in our values.

A2 cos2(φ) + A2 sin2(φ) = A2

(2
√

3)2 + 22 = A2

12 + 4 = A2

±4 = A

Okay, that was a lot but we’re finally getting somewhere here. We solved for A, now we can solve for φ.
The thing to keep in mind is that we have two values of A here, a positive and a negative value. The value
we choose ends up not mattering which I will showcase later. To start though, I will choose positive 4.

2
√

3 = A cos(φ) A sin(φ) = 2 sin(x)

2
√

3 = 4 cos(φ) 4 sin(φ) = 2 sin(x)

cos(φ) =
2
√

3
4

sin(φ) =
1
2

cos(φ) =

√
3

2

This step is easy, we just need to find the values on the unit circle where each of these is true.

cos(φ) =

√
3

2
when φ =

π

6
or

11π

6

sin(φ) =
1
2

when φ =
π

6
or

5π

6
So, it seems like φ = π

6 is our culprit. Perfect. We’re not done yet though!
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To be thorough let’s go ahead and check A = −4 as well. I’ll spare you the calculations, all we need to
do is flip the signs. We get cos(φ) = −

√
3

2 and sin(φ) = − 1
2 .

cos(φ) = −
√

3
2

when φ =
5π

6
or

7π

6

sin(φ) = −1
2

when φ =
11π

6
or

7π

6

Our culprit now is φ = 7π
6 . What’s interesting here is that these are different values of φ. Let’s plot them

and see what’s going on. Before we can do that though, let’s finish the first part of this problem and plug
these values back into C(x).

C(x) = 4cos
(

x +
π

6

)
C(x) = −4cos

(
x +

7π

6

)

0.5π 1π 1.5π 2π

−4

−2

2

4
4cos

(
x + π

6
)

−4cos
(
x + 7π

6
)

What we see here is that the two graphs overlap. They’re equivalent functions. To describe what’s going
on the difference in phase shifts is, in a way, negated by the flip. As such both answers here are correct.
Both ways of writing out C(x) are equally valid!

So, I mentioned earlier that I simply assumed ω = 1 but that how I solved the problem made that
irrelevant. Let’s go through and solve for ω just to be positive. To do this we will simply substitute back in
everything we know into our formula and solve!

For the following, let α = ωx and β = φ as always.

A cos(ωx + φ) = 2
√

3 cos(x)− 2sin(x)

A cos(ωx) cos(φ)∓ A sin(ωx) sin(φ) = 2
√

3 cos(x)− 2sin(x)

A cos(φ) cos(ωx)∓ A sin(φ) sin(ωx) = 2
√

3 cos(x)− 2sin(x)

4 cos(
11π

6
)cos(ωx)∓ 4 sin(

11π

6
) sin(ωx) = 2

√
3 cos(x)− 2sin(x)

4

(√
3

2

)
cos(ωx)∓ 4

(
−1

2

)
sin(ωx) = 2

√
3 cos(x)− 2sin(x)

2
√

3cos(ωx)∓−2sin(ωx) = 2
√

3 cos(x)− 2sin(x)
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Note: Due to the −2sin(x) on the righthand side we know that the ∓ we have on the lefthand side will be
a plus sign. They have to be inverted.

2
√

3cos(ωx) +−2sin(ωx) = 2
√

3 cos(x)− 2sin(x)

2
√

3cos(ωx)− 2sin(ωx) = 2
√

3 cos(x)− 2sin(x)

The left and righthand side are now identical!

∴

ω = 1

Okay, so we’re on the fourth page and I need to reassure you that we’re almost there. All we need to do
now is go back to the beginning and work through S(x) in the same way. It’ll be faster this time though!
So, of course first we need to equate f (x) with S(x). Also recall that ω = 1 and B = 0.

f (x) = 2
√

3cos(x)− 2sin(x)

S(x) = A sin(ωx + φ) + B

sin(α± β) = sin(α) cos(β)± cos(α) sin(β)

We’ll let α = ωx amd β = φ just as last time.

2
√

3cos(x)− 2sin(x) = A sin(ωx− φ) + B

2
√

3cos(x)− 2sin(x) = A sin(ωx) cos(φ)− A cos(ωx)sin(φ) + B

2
√

3cos(x)− 2sin(x) = −A cos(x)sin(φ) + A sin(x) cos(φ) + 0

2
√

3cos(x)− 2sin(x) = −Asin(φ) cos(x) + A cos(φ) sin(x)

Alright, so now we equate the coefficients again. You know how it goes.

2
√

3cos(x) = −A sin(φ) cos(x) 2sin(x) = A cos(φ) sin(x)

−2
√

3 = A sin(φ) 2 = A cos(φ)

Time to do the Pythagorean identity again just to be certain of our A value.

cos2(φ) + sin2(φ) = 1

A2 cos2(φ) + A2 sin2(φ) = A2

(−2
√

3)2 + 22 = A2

12 + 4 = A2

A = ±4
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Time to wrap this up.

−2
√

3 = 4 sin(φ) −2 = 4 cos(φ)

sin(φ) = −
√

3
2

cos(φ) = −1
2

−2
√

3 = −4 sin(φ) −2 = −4 cos(φ)

sin(φ) =

√
3

2
cos(φ) =

1
2

sin(φ) = −
√

3
2

when φ =
4π

3
or

5π

3

cos(φ) = −1
2

when φ =
4π

3
or

2π

3

sin(φ) =

√
3

2
when φ =

π

3
or

2π

3

cos(φ) =
1
2

when φ =
π

3
or

5π

3
So, when A = 4 we know that φ = 4π

3 and when A = −4 φ = π
3 .

Plugging these values back into S(x) we get the following:

S(x) = 4sin
(

x− 4π

3

)
S(x) = −4sin

(
x− π

3

)
All five functions perfectly overlapping proves that we do in fact have five equivalent functions.

0.5π 1π 1.5π 2π

−4

−2

2

4
f (x) = 2

√
3 cos(x)− 2 sin(x)

C(x) = 4cos
(

x + π
6
)

C(x) = −4cos
(
x + 7π

6
)

S(x) = 4sin
(

x− 4π
3

)
S(x) = −4sin

(
x− π

3
)

C(x) = 4cos
(

x +
π

6

)
C(x) = −4cos

(
x +

7π

6

)
S(x) = 4sin

(
x− 4π

3

)
S(x) = −4sin

(
x− π

3

)
�
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35 Show that if f (x) = Asin(ωx + α) + B, then f (x) = Acos(ωx + β) + B where β = α− π
2 .

This becomes easy to demonstrate when we look at what α in these functions represents, which is the phase
shift. Sine and cosine are identical waves, sine is just shifted to the right by π

2 . So it would stand to reason
that when β in this instance is just α− π

2 that you would get two equivalent waves. We can demonstrate
this with a plot.

0.5π 1π 1.5π 2π

−2

−1

1

2
f (x) = sin(x)
f (x) = cos(x)

f (x) = cos(x− π
2 )

�

For exercises 38–40, verify the identity by graphing the right and left hand sides on a calculator.

38 sin2(θ) + cos2(θ) = 1

0.5π 1π 1.5π 2π

0.5

1

1.5

2
f (x) = cos2(x) + sin2(x)

f (x) = 1

�
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39 sec2(θ) + tan2(θ) = 1

0.5π 1π

0.5

1

1.5

2
f (x) = sec2(x)− csc2(x)

f (x) = 1

�

40 cos(x) = sin
(

π
2 − 2

)

0.5π 1π 1.5π 2π

−2

−1

1

2
f (x) = sin

(
π
2 − x

)
cos(x)

�
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In exercises 44–50, graph the functions and discuss the given questions.

44 f (x) = cos(3x) + sin(x).
Is this function periodic? If so, what is the period?

0.5π 1π 1.5π 2π 2.5π 3π

−2

−1

1

2
f (x) = cos(3x) + sin(x)

This function is periodic even if it doesn’t appear to be at first glance. Going off of the plot alone the
period seems to be right around 2π as normal. Looking at the function we know we’re combining two
periodic functions. cos(3x) is going to repeat way faster than normal, whereas sin(x) will have a standard
period of 2π. So why does the overall function have a period of 2π? We can calculate it to find out. Let’s
get the period of our sine and cosine individually first.

3xcos = 2π xsin = 2π

xcos =
2π

3

The period of f (x) then is the least common multiple of xcos and xsin. Upon inspection we can see that
the L.C.M is 2π. �
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45 f (x) = sin(x)
x

What appears to be the horizontal asymptote of the graph?

-3π -2.5π -2π -1.5π -1π -0.5π 0.5π 1π 1.5π 2π 2.5π 3π

−2

−1

1

2
f (x) = sin(x)

x

The horizontal asymptote appears to be at f(x) = 0. This makes sense as due to x being in the denomi-
nator it can never be zero, and as x grows the fraction will simply get closer and closer to zero as it reaches
infinity in either direction. �

46 f (x) = x · sin(x).
Graph y = ±x on the same set of axes and describe the behavior of f .

-3π -2.5π -2π -1.5π -1π -0.5π 0.5π 1π 1.5π 2π 2.5π 3π

−10

−5

5

10
f (x) = x · sin(x)

x
−x

So, what’s happening here? So, first the obvious. As x grows the amplitude also grows. Also, the local
maximums and minimums match up precisely with y = ±x. This relationship will continue to hold true
as x reaches infinity in either direction. f (x) will, in a sense, never actually leave the boundaries set by
y = ±x. �
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47 f (x) = sin
(

1
x

)
What’s happening as x → 0?

What’s happening here is that as x approaches zero the periodicity of the function gets bigger and bigger.
This means it completes cycles faster and faster as we get closer to zero. I would describe the graph as
violently oscillating between 1 and -1 at a speed that impossible for me to comprehend. The software I use
for plots doesn’t handle functions like this particularly well due to a limitation of given points. As such I
used the software desmos which handles continuous graphs better.

�

48 f (x) = x− tan(x)
Graph y = x on the same set of axes and describe the behavior of f .

-2π -1.5π -1π -0.5π 0.5π 1π 1.5π 2π

−10

−5

5

10
f (x) = x− tan(x)

So, what’s happening here is that the center point of each tangent period is increasing/decreasing along-
side the y = x function. Normally those center points are all right at y = 0. �
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49 f (x) = e−0.1x(cos(2x) + sin(2x))
Graph y = ±e−0.1x and describe the behavior of f .

f (x) intersects twice with e−0.1x near its local maximums consistently along the entire domain of
(−∞, ∞). �

50 f (x) = e−0.1x(cos(2x) + 2sin(x))
Graph y = ±e−0.1x and describe the behavior of f .

So, this may not be the best description but I would say that with every ”period” of the graph you have
bimodal humps that ride along e−0.1x as f (x) goes from −∞→ 0. This behavior continues along the entire
domain but the amplitude goes down as x reaches ∞. �
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